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ACCURACY AND CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS

Joseph E. Walz, Robert E, Fulton,
and Nancy Jane Cyrus

NASA Langley Research Center
Langley Station, Hampton, Va,

The paper reports on a theoretical investigation of the conver-
gence properties of several finite element approximations in current
use and assesses the magnitude of the principal errors resulting from
their use for certain classes of structural problems, The method is
based on classical order of error analyses commonly used to evaluate
finite difference methods. Through the use of the Taylor series dif-
ferential or partial differential equations are found which represent
the convergence and principal error characteristics of the finite
element equations. These resulting equations are then compared with
known equations governing the continuum, and the error terms are
evaluated for selected problems. Finite elements for bar, beam, plane
stress, and plate bending problems are studied as well as the use of
straight or curved elements to approximate curved beams. The results
of the study provide basic information on the effect of interelement
compatibility, unequal size elements, discrepancies in triangular
element approximations, flat element approximations to curved
structures, and the number of elements required for a desired degree
of accuracy,
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SECTION 1

INTRODUCTION

Finite element methods have been used for many years with success in the analysis of
complex structures and many aerospace structures are designed on the basis of these analyses.
In spite of such widespread use, not enough is known of the theoretical accuracy and conver-
gence properties of these models when used to represent a structure. Accuracy studies are
usually based on numerical solutions to restricted problems for comparison with known
results. Convergence studies are carried outby investigating the convergence of the numerical
results as the number of elements is increased (Reference 1). Such methods, while valuable in
providing a cursory assessment of the reliability of various model approximations, are heavily
dependent on the numerical data and the problem studied and may obscure the true character
of the approximation. More basic information is needed on the theoretical convergence

properties of various finite elements for structural approximations.

The purpose of the presentpaper is to report on a theoretical investigation of the accuracy
of several stiffness finite element method approximations in current use and to assess the
magnitude of the errors resulting from the use of these approximations for certain classes of
structural problems, The present paper documents preliminary results on convergence of
several models given orally in Reference 2, extends the study to additional models, and
utilizes this data for accuracy investigations. The method used is based on classical order of
error analyses commonly used to evaluate the discretization errors of finite difference
methods. Through the use of the Taylor series, the ordinary or partial differential equations
are found from which the convergence and error characteristics of the finite element equations
can be determined. These resulting equations are then compared with the known equations
governing the structure. An estimate of the discretizationerror in the finite element approxi-
mation is evaluated by procedures giveninReferences 3 and 4 for a limited class of deflection
and vibration problems to provide simple formulas for the size of an element required to
obtain a certain degree of accuracy. Finite elements for bar, beam, plane stress, and plate
bending problems are studied as well as the use of straight and curved elements io approxi-

mate a curved beam.,
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SECTION II

ERROR ANALYSIS PROCEDURE

Two major sources of error result from the use of finite element methods to solve
structural problems. These may be conveniently separated into round-off error and dis-
cretization error. Round-off error is that error associated with the accuracy with which
numbers are manipulated in a computer and is not considered in the present paper, Dis-
cretization error is that error associated with using discrete variables {o represent a
problem where the state variables are continuous. This error occurs irrespective of the
accuracy of numerical calculations and occurs in structural problems when finite elements
are used to approximate a continuous structure. Discretization error may be of {wo kinds:
(1) errors proportional to the size of the element which vanish as the element size vanishes
and (2) errors which do not vanish when the elementsize vanishes. Elements and/or patterns
which lead to the second kind of discretization errors are unsatisfactory approximations
and should be recognized and avoided. The present paper deals with an assessment of

discretization error in finite element approximations.

The method used in the study is to obtain the typical finite element equations which
express force equilibrium at a reference node point in terms of displacement variables,
These finite element equations (which are a class of difference equations) are then expanded
in Taylor series about the nodal point to obtain the differential equations equivalent to the
finite element equations at that node. The resulting differential equations are compared with
the governing equations for the continuum approximated. A simple bar element approximation
is treated in detail as an example to characterize the method and to define the terms to be
used in the study,

DISCRETIZATION ERRORS

The force-displacement relations of a typical one-dimensional structural element having

ends i-1 and i are

= K {1

where Fi and Si are the vector of nodal forces and displacements at the ith node and K is

the element stiffness matrix. Consider a bar of constant cross sectional area A subjected
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to a distributed axial load p(x) and approximated by finite elements, where x denotes distance
along the bar (Figure 1), For a bar finite element Fi is the nodal extensional force, 8i is the
corresponding displacement uy and

I

where h is the length of the element and E is Young’s modulus.

In finite element methods distributed loads are replaced by concentrated loads at the
node poinis. There are several rational ways in which distributed loads may be converted to
concentrated loads. The primary purpose of the present paper is to investigate the accuracy
of finite element approximations to structures and this can be done by using a very simple
lumping procedure for loads. This procedure, for example, for the bar gives the concentrated
load as the value of the distributed load at a grid point multiplied by one-half of the total
length of the two adjoining elements. Treating the distributed load in this manner and utilizing
Equations 1 and 2 leads to the following equation for equilibrium at a typical it'h point located
between two segments of length h and ah (Figure 1).

%[-ui—l+”i]+%[ui_"i+l]=w el

Equation 3 is a typical finite element equilibrium equation for the indicated approximation,

The behavior of the system of Equation 3 is investigated as the number of equations goes
to infinity and the size of the element vanishes, This is done by examining Equation 3 in the
limit as h approaches zero with the aid of the Taylor series expansion of displacements at
points i-1 and i+1 about the ith point, This procedure results in

h w2 +a’) v p

u__|_(1 v L LA
u 3( )u-i-|2 o u + +EA 0 (4)

where primes denote differentiation with respect to x and where the subscript i has been
omitted from ;. (Omission of such subscripts is done consistently throughout theﬂp;aper).
Equation 4 is the differential equation equivalent to the finite element equation at the i node.
The terms in Equation 4 which are not multiplied by powers of h comprise exactly the
governing differential equation for the continuous bar and the remaining terms are the dis-

cretization errors resulting from use of the finite element approximations.

If a finite element equation converges o the governing differential equation for the con-
tinuous structure as h vanishes, the finite element approximation will be defined in this paper

to be a consistent approximation, Those terms in Equation 4 which differ from the continuous
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Figure 1, One Dimensional Bar and Its Finite Element Representation

structure equation are the discretization errors and the principal error in the approximation
is the set of terms in the discretization error multiplied by the lowest power of h, The power
of h multiplying the principal error denotes the order of the discretization error of the finite
element equation and the rate of convergence as h vanishes, Thus, the finite element equation
leading to equation (4) has a discretization error of order h, Note that if the segments are
equal ( @ = 1), the discretization error is of order h2. Similarly, if the finite element equations
do not converge to the governing differential equations, the discretization error would be of
order h0 or one.

HARMONIC LOADING AND VIBRATION EXAMPLE

The error analysis procedure described in the previous section gives only the rate of
convergence of the finite element approximation, The magnitude of the discretization error
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in the bar finite element approximation canbe evaluated for the special case of a bar supported

at each end, subjected to a sinusoidally distributed static loading

. ommX
o L

(5}

and approximated by equal length elements. In Equation P, is the amplitude of the loading,
m the number of half waves and L the length of the bar, For this case Equation 4 becomes

i p mrx
o' = '+ o+ =2 sin =0 (6)
EA L

If the loading is regarded as a continuous function as was done in Reference 3 and 4, the
solution to Equation 6 is

mrx
= in —L2 7
us u, sin . {(7)

where u, is the amplitude of the displacement. Substitution of Equation 7 into Equation 6

results in

0 s Iui‘e ~ g, [l+e] (8)
where

Ugy = Epc;x (’-"‘-L-T;_-)Z sin ml“ (9

is the exact golution to the bar for the sine loading,

2
ki

€ = W {10)

is the principal error in deflection resulting due to the finite element approximation and

L/m
- =% {n

is the number of elements per harmonic half-wave used to approximate the bar, The following

are results for various values of N and error

N €

0.10
4 .05
9 01
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Thus, approximafely three elements per deflection half-wave are needed to keep the error

in finite element deflection calculations at a node to within ten percent.

A similar approach can be used to determine the error in natural frequency of the bar
example when approximated by equal length elements, For vibration behavior where a simple
lumping process is used to obtain a diagonal mass matrix the counterpart of Equation 6 is

2 2

+ h uiv+_'_ﬁw R 12)
12 EA

where m is the mass per unit length and w is the circular frequency. The vibration mode

shape is the same as Equation 7 and the eigenvalues of Equation 12 are

w? s w:x [I- e] (13)
where
‘ EA
ot lar) 2 0

and € is the discretization error due to the finite element approximation given by Equation 10,
Note that the error in the square of frequency is the same as that resulting from static de-
flection calculations except of opposite sign. Thus, the frequency calculations converge from

below and deflection calculations converge from above.
For completeness, Table I{a) summarizes the principal error terms for the general bar

finite element approximations and Table Il evaluates these errors for the harmonic response

examples,
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SECTION III

RESULTS AND DISCUSSION

The method described in the previous section was used to investigate the convergence of
beam elements, straight and curved element approximations to an arch, rectangular and
triangular plane stress elements, and plate bending elements. The results of the investigation
are summarized in this section together with a general discussion. A summary of the error
study details is given in Tables I and II.

ONE DIMENSIONAL BENDING ELEMENT

When bending hehavior is introduced finite element models and the discretization error
analysis procedure become more complex. To indicate the additional features hrought on by
hending, consider a simple prismé.tic beam subjected to lateral pressure q and approximated
by an assemblage of beam bending finite elements of length h (Figure 2), The finite element
nodal variables for this problem are

Wi
- 15
where w, and Bi are the displacement and rotation at a node, and two finite element equilib-

rium equations are obtained at eachnode. These fwo equations are expanded in a Taylor series
about the ith point (considering both w and 8 as independent variables) giving

4 6 4
2 v h Vi h Vil ‘ 2 A h v
—12w'- -— - w + -+ 128 +2n 8" +—8
2w =h w —5 ¥ 1680 10
] 2
h viii qh
+—28 +0: (16)
420 EI
2 q -] 2
h e h v h vii h "
= w' —_ —_ + +eer — — 8
6 =w + W'+ 5" *50a0"
4 ]
h iv h vi )
-7 8 g ¢ an

where [ is the moment of inertia of the beam cross section, Since beam behavior for a con-
tinuum is defined by only one independent variable w, it is useful to eliminate 8 in so far as
posgible from the finite element equation. This is done by differentiating Equation 17 to obtain

expressions for derivatives of £ and sequentially back substituting these derivatives into
both Equations 16 and 17,
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TABLE I.- FINITE ELEMENT DISCRETIZATION ERROR

(a) One-Dimensicnal Elements

Error terms

Nodal Governing
Element ; {appearing in left-hand
variables differentisl equatlons side of equationsa)
BAR 2
{u} u'! +PEE=0 %(1—0{.) utre +hﬁ%_:7_:;luiv+...
(&) Unequal segments
11.2 iv
{b) Equsl segments " " TBU 4.
AV a ' it
. = E T20
BEAM &) L
' h ¥
8 =w Esa L A
T w' "
EA(—U. +R—)—p=0 %(W"'+5i-—)+o(h2)
ARCH h ‘e v W o
{w} EI(wiv+2“—5-+%)+EA(-u?+—2')-Q=0 %(33- EHR—-u"')+0(h2)
{&) Straight segments ] R R R R
- w' + B 2
B =w + B O(h )
" o(s)
(b) Curved segments " " O(ha)
L 0(h2)
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TARLE IT.- ERROR TERMS FOR HARMONIC RESPONSE EXAMPLES

Element Error terms
Bar
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Equations 16 and 17 finally can be put in the form

4
iv h viti 9
- 02— (18)
Y 720" ET
h4 v
— L + - =0
6 —w+ 80 " (19)

Equations 18 and 19 show that in the limit as h vanishes the beam finite element equations
converge to the familiar beam equation and the correct constraint equation between the two
finite element variables & and w. The equations also show that the principal error term in
the approximation is order h* (Table 1(2)).

The principal error was evaluated for a finite element approximation to a simply sup-
ported beam of length L subjected to a sinusoidally distributed lateral load g,

q =q, sin m1|r_x (20)

where 9, is a constant. The error in the lateral deflection w of the beam due to the finite
element approximation is (Table II),

q
S LA (21)
T 720N4

Equation 21 also gives the magnitude of the error in frequency determination due to the finite
element approximation (Table 1I).

APPROXIMATION OF CURVED STRUCTURES

Straight elements are often being used to approximate curved structures such as curved
beams, arches, and shells. To gain some insight into the influence of curvature, an arch of
radius R was approximated by conventional straight beam elements which also had extensional
capability. The arch loading is a normal pressure q and a tangential distributed loading p
(Figure 3). At a typical ith node three variables are required to define element behavior,
For this problem it is convenient to take these variables as

8, = w (22)
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where u and w are the tangential and radial displacements and & the rotation, Three finite
element equations result from force and moment equilibrium, As the element size vanishes,
the moment equilibrium equation at the ith node converges to the correct constraint equation
between the rotation 8, radial displacement w, and tangential displacement u

g-(w +5):0 (23)

and the tangential and normal equilibrium equations converge, respectively, to

" w‘ . EI e ull
e (-um+ 3 )= o (w4 29
. 1" -t fr
ex(wi +2-!—+L)+EA(_U_+_WE)_q: _EL(_!;J,Q__U".) (25)
R2 R4 R R R R R

In Equations 24 and 25 the rotation & has been eliminated by using Equation 23 in a manner
similar to that done earlier for the other bending problems, A typical set of arch continuum
equations such as those given in Reference 5 is composed of only the left-hand side of
Equations 23, 24, and 25; namely, equation 23 plus

L}
EA(—U"+—L -p =0
—1)-» (26)

. " '

EI(w'“+2t,';—s+$)+EA(-“?+ﬁ)-wo en
Comparison of Equations 24 and 25 with 26 and 27 shows that finite element equations re-
sulting from a straight element approximation do not converge to these arch equations since
the right side of 24 and 25 does not vanish. Thus, the discretization error appears to be of
order one and suggests that some errors result from the use of straight elements to approx-

imate the bending behavior of the curved structure.

A study was also made of the use of curved elements to approximate the curved structure,
While the details have been omitted here the stiffness matrix for a curved element was
derived from the strain energy consistent with arch Equations 26 and 27 (Reference 5). The
displacements were approximated by assuming that arch tangential and normal displacements,
were linear and cubic, respectively, over the curved element length, The resulting finite
element equations were investigated and it was found that the element pattern converged to
the arch Equations 26 and 27 with an error of order h2.
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An assessment of the magnitude of the order one discretization error terms in Equations
24 and 25 can be obtained by considering a closed circular ring subjected to a harmonic
lateral loading and approximated by straight elements. In the limit as the element size h
vanishes the resulting straight element psuedo arch is governed by Equations 24 and 25 and

p=0 (28)

_ . mx
9 = q_ sin—— {29)
The principal errors in the u and w deflections €4 and € due to the finite element approxi-
mation are (Table II)

€ = ( ?P) (30)

. (P2
€w ( R ) (31)
where p is the radius of gyration of the arch. Equations 28 through 31 indicate that the order
one discretization errors lead to errors in deflection which are proportional to the square of
the ratio of the radius of gyration to the arch radius. For a typical arch cross section these
errors are quite small and well within accuracy requirements for engineering purposes

provided enough elements are used. Tangential displacement errors are also proportional

to mz; however, the ring theory breaks down for very high harmonics.

P

Since the magnitude of the order one errors are proportional to (ﬁ- )2 and therefore
quite small for thin arches it suggests that Equations 24 and 25 are acceptable arch equations.
Further investigation shows thata suitable thin arch theory can, in fact, be derived which leads
to Equations 24 and 25, This theory canbe obtained from the arch theory of Reference 5 if the
change in curvature are modified by an additional term which is the extensional strain
divided by the arch radius.* According to the Koiter criteria for thin shells (Reference 12}
such modifications are admissible variations of a first approximation theory of thin shells
and it seems reasonable to apply this criteria to arch theory. Thus both straight and curved
elements provide a convergent approximation to a first approximation thin arch theory as
the element size vanishes,

*The authors are indebied to Professor B. Budiansky of Harvard University for suggesting
that alternate first approximation arch theories be investigated,
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TWO DIMENSIONAL PLANE STRESS ELEMENTS

The linear elastic plane stress equations for equilibrium in the x and y directions
formulated in terms of displacements are, respectively:

I—p d+p Pxo
Y BT Myt vyt 0 (32)
T2 Yy T Y Ryt e 0 (33)
Here u and v are the displacements in the x and y directions, respectively, P p the dig-
tributed forces, A Poisson’s ratio, B = Et/ ( ) the extensional stiffness and t the plate

thickness, A satisfactory finite element approximation should lead to equations which converge
to Equations 32 and 33 at a node as the element size vanishes,

Rectangular Elements

Two rectangular plane stress plate elements were investigated in the study and their
stiffness properties are documented in reference 6. For the first model, denoted linear siress
model, the stresses in the x and y directions are assumed to vary linearly while the shear
stress is constant (Figure 4). For the second model, denoted a linear edge displacement
model, the displacements along an edge of the element are assumed to vary linearly, The
nodal variables used to define the stiffness matrices for these finite elements are

]

and a typical finite element equation contains contributions from all elements contiguous to the
node, The patiern arrangement composed of equal elements is shown in Figure 4, The
distributed forces on the plane stress body were again concentrated in a simple fashion based
on the value of the distributed force at each node location. The typical finite element equations
were obtained and the error terms evaluated, An investigation of the convergence of the
finite element equilibrium equation for both models showed them to converge to the plane

stress equations 32 and 33 with a principal error of order h (Table I(b)).

The principal error was evaluated for the case where the two rectangular elements
were used to approximate a square plate in plane stress subjected to a harmonic in-plane

loading, in the y direction. The loading is
px = 0 {34)
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and the plate is supported on the boundary such that the force resultant in the x direction and
the v displacement both vanish, For M= 0.3 and m = n the errors in the u and v displace-
ments, € and €. respectively, are (Table II).

1. linear stress model

€ v = 2 (37}

2. linear edge displacement model

€ = (38}

€,° 2 (39}

where N is the number of elements per half wave-length,

Triangular Elements

Results were also obtained for the use of the classical triangular plate element (Ref-
erence 7) to approximate plane stress problems. Arrangements or patterns A, B, and C
were investigated for the convergence of three right triangular elements (Figure 5 for
patterns about ij point), It was found that pattern A converges to the required plane stress
equations 32 and 33 and the principal error is of order hz. On the other hand, the corre-
sponding equations for pattern B are

p
1K L S 40)
U 3 I 0 (
| . P
T Vixx *Va, + g =0 (41)
and pattern C are
| - p P
u,xx + 2 u,yy + (, +’J', V,xy +_B£ = 0 (42)
[ P
G+ Uigy * —3 Vigx * Viyy +—§l =0 (43)

The additional error terms for all patterns proportional to h2 are given in Table I(b),

1015



ke

AFFDL-TR-68-150

D wIgNd

(i 4

b v

suraed jueweiy 931urg Jrinduerar,

g uIe998d

Cfy
go
A

e

\.

ke

*g eandi g

¥ wIajjed

e w—]

10186



AFFDL~-TR-68-150

Some points can be noted by comparing the convergence characteristics when h = 0 of
the B and C equations with Equations 32 and 33. First of all both patterns B and C lead to a
discretization error of order one., The pattern B equations do not contain cross-derivative
terms suggesting that convergence of shear behavior at the nodal point is poor, This is not
unexpected since there is no mechanism in the finite element equations for representing
changes in shear at the nodal point due to the arrangement of the elements. On the other
hand, the pattern C equations over prescribe the cross-derivative term by a factor of two,
Note that the difficulty arises from the element arrangement rather than the element
properties since the element used here fully represents all states of Plane stress, This
indicates that convergence difficulties may arise for some triangular elements as a result of
poor element arrangement even though the element is well formulated.,

Since the difficulty with pattern B is due to its inability to represent the cross derivative
at the node, better convergence properties would be expected if additional degrees of freedom
were used to characterize the right triangular element behavior. Such added degrees of
freedom might be the deflections at the midpoint of the various edges or the derivatives of
displacements at nodes,

Fortunately, if patterns B and C are used in structural idealizations, they usually occur
in pairs (Figure 5) and the under prediction of the shear stiffness at one point is compensated
for to some extent by anover prediction of shear stiffness at a neighboring poinf. Nevertheless,
these results do suggest that caution should be exercised to ensure that an excessive number
of either patterns A or B does not occur in a structure when the results are strongly de~
pendent on shear stiffness. A more consistent approach is to use pattern A since it converges
to the appropriate plane stress equation.

For completeness, the convergence of a pattern composed of equilateral triangles in
plane stress was also investigated. The typical pattern is shown in Figure 6 and the resulting
finite element equations were found to converge to the plane stress equations with a principal
error of order h2. {Table I(b)).

TWO-DIMENSIONAL PLATE BENDING ELEMENTS
Three rectangular plate bending models were investigated to determine the convergence

and principal errors of the resulting finite element equations, The models investigated were
those developed by Papenfuss (Reference 8), Melosh (Reference 9), and one developed
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Figure 6, Equilateral Triangular Finite Element Pattern

independently by Adini and Clough (Reference 1 or Reference 10} and Melosh (Reference 11),
(These will be denoted respectively as the Papenfuss, Melosh, and ACM models.) The pattern

arrangement is shown in Figure 7. The nodal variables for these finite element models are

i i 44

where w is the lateral displacement and & and ¢ the rotations about the y and x axes,

respectively, On the basis of the beam results a consistent set of three plate bending finite
element equations should be expected to converge to

4

Viw =3 (45)
g = W, (46)
¢ =Wy @7
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as the element size vanishes, Here Equation45is the familiar plate equation and Equations 46
and 47 are constraint equations between the rotations 8 and ¢ and derivative of w, The finite
element equilibrium equations for the three models at a node point were expanded in a Taylor
series and manipulated to a convenient form in a manner similar to that done for the beam
equations, All three models lead to equations which converge to constaint equations of the
form of Equations 46 and 47 and the Melosh and ACM models also converge to the Plate
Equation 45, The Papenfuss model, however, converges to a psuedo plate equation
2

v4w+(%_+ %ﬁ_+%)w'“*yy -+ (a8)
where a is the aspect ratio of the element and thus has a principal error of order one, The
principal errors for all other equations for the three models are proportional to h2 with the
exception of the constraint equations for the ACM model which are proportional to h4
(Table I(c})).

It is well known from numerical calculations (Reference 1) that the Papenfuss model has
some deficiencies and that the source of the discrepancies is the inability of the model to
describe the twist behavior of a plate. This discrepancy term shows up as an incorrect cross-
derivative term in Equation 48 when h vanishes,

Square elements of the three models were then used to approximate a simply supported
square plate subjected to a harmonic loading.

. mT% _ nTx
q = q, sin —— sin — (49)

The same procedure was used to approximate the lateral vibration characteristics of the
plate. The error in deflection € 1 and the error in frequency €, due to the finite element
approximation is, for m =n and @ = 0,3 (Table I).

Paopenfuss Melosh ACM
.2646 .708 1.069
€| 0463 - Na Nz N2
c — 0486 - .2209 708 1.069
2 N2 N2 N2
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where N = aI: L is the number of elements per Fourier half-wave, Figure 8 shows a sketch

of the plate and a plot of the ratio of the finite element resulis to the exact result for the
three elements as the l/N2 vanishes, The results show that in the limit as the size of the
element vanishes, the results for this problem based on the Papenfuss model have an error

of approximately five perceni. Note also that the Papenfuss model converges from below
and the other two models converge from above,

Since the Papenfuss model equations do not converge to the plate equation, a solution was
obtained for the resulting Papenfuss psuedo plate Equation 48 for a rectangular planform
subjected to a uniform load §, having simple support boundary conditions and approximated
by elements having the same aspect ratio as the plate. The solution was obtained by classical
Fourier series expansion for the load § and deflection shape as

— . mwx _ nwy (50)
g = 2 > Qpyp Si0 o sin ~—
m =1 n=l
) . mmx oy
w3 P W sin 5 sin = (51)
m= | n=l

where a and b are the lengths of the plate in the x and y direction, respectively.

The w___ are related to the g by
mn

16 q

mn ° 4 2 2 2 4
2 m mn 2a 2 2 n
men[—+——(2+—-—-+ +-—)+—]
04 o 2 b2 35 35(12 25
The following compares the center deflection W of the Papenfuss psuedo plate with the exact
plate results

"_‘;’03 X 10°

Popenfuss Plate Exoct
a/b = 1 3.87 4.086
o/b = 1/2 5.64 10.13

These results indicate that the Papenfuss psuedo plate has an error of approximately five
percent for both cases. Numerical results obtained in Reference 1 for the above cases appear
to be converging toward these analytical results,
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COMPARISON OF ELEMENT MODELS

Some general results can be deduced by comparing the convergence and principal error
results of the various element approximations. One result deals with the requirement of
interelement compatability, Consideration of the elements for both Plane stress and bending
gave examples where this requirement was neither necessary nor sufficient to insure
convergence. The rectangular linear stress model is not interelement compatible in dis-
placements and the rectangular Melosh and ACM bending models are not compatible in slope;
yet these three lead to convergent equations. On the other hand, the right triangular plane
stress patterns A and B are interelement compatible in displacements and the Papenfuss
plate bending element is compatible in slope and displacements and yet these elements and
arrangements do not lead to convergent equations,

Some influence of unequal length segments is seen from the change in principal errors
for the bar approximations. For bar elements of equal length the principal error is propor=~
tional to h and for bars of unequal length proportional to h. From the asymmetric character
of the Taylor series expansion about the reference point similar reduction of the order of
error would be expected for other elements, This slower rate of convergence suggests that
results may be less accurate when structures are approximated by unequal elements than
where approximated by equal length segments.

Comparison of the errors for the plane stress with those of the bar subjected to harmonic
loading indicates that approximately nine bar elements and 15 square plane stress elements
per half wave in one direction are required for one percent error. Approximately two beam
elements and nine square Melosh plate bending elements are required for 1 percent error,
This result indicates that more elements are required per wave length in one direction for
two-dimensional behavior than for one~dimensional behavior to obtain the same degree of
accuracy, This is important because practical complex structures such as stiffened plates
or shells are two-dimensional and usually approximated by various combinations of one-
and two-dimensional elements, Since the elements have varying degrees of accuracy, results
obtained for a structure approximated by a combination of the elements may be biased in
some sense rather than having uniform inaccuracies,
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SECTION 1V

CONCLUDING REMARKS

Basic data are presented on the convergence and accuracy of finite element equations
resulting from patterns and elements in common use. The elements studied include bar
elements, beam elements, plane stress elements of rectangular and triangular shape, plate
bending elements of rectangular shape and straight and curved arch elements. The results
indicate that many of the elements and patternshave good convergence properties; that is, the
resulting finite element equations at a node converge to the continuum equations at the node
as the element size vanishes. The results also indicate that some elements and/or patterns
have poor convergence properties. Right triangular plane stress patterns for example, can
have undesirable convergence properties. It is shown that the requirement for interelement
compatibility is neither necessary nor sufficient to guarantee convergence of the finite element
equations. Results for arch approximations show that both straight and curved elements

provide a convergent approximation to an arch structure.
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SYMBOLS
A cross~sectional area of one dimensional element
a,b length of rectangular panel in x and y directions, respectively
B extensional stiffness of plate, Et 3
| =

D bending stiffness of plate _EtS

1201 - u?)
E Young’s modulus
F finite element nodal force
Fos Fy nodal force in x and y directions of plane stress element
h reference length of finite element
I moment of inertia of cross section
K element stiffness matrix
L length of one dimensional structure
m,n - harmonic wave numbers for sinusoidally distributed loads
m mass per unit length for one dimensional element; mass per unit area

for two dimensional element

N = r:’—m z hLm. number of elements per harmonic wave number
O (h) omitted discretization error term of order h
p tangential loading on bar and arch structures
X amplitude of sinusoidal in-plane loading
P py distributed in-plane loading in x and y directions
q transverse loading
9 amplitude of sinusoidally distributed transverse loading
R radius of arch
t thickness of plate
u,v, w displacements in X, y and z directions
Uy Yo % amplitude of sinusoidally varying displacements
X,y rectangular coordinates
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SYMBOLS (CONT)

{3}

6, ¢

H
P

w

SUBSCRIPTS
ex

constant indicating ratio of element dimensions

vector of nodal displacements

discretization error in displacement or frequency parameter
discretization error in u and v displacements

nodal rotation variables for bending element about y and x axes
Poisson’s ratio

radius of gyration of cross section

circular frequency

exact

identification for {8 grid point
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